全文预览

《空间中的垂直关系》教案

上传者:读书之乐 |  格式:doc  |  页数:8 |  大小:153KB

文档介绍
1C1C.证明:(1)∵三棱柱ABC-A1B1C1是直三棱柱,∴侧面与底面垂直,即平面A1B1C1⊥平面BB1C1C,又∵AB⊥BC,∴A1B1⊥B1C1从而A1B1⊥平面BB1C1C.(2)由题设可知四边形BB1C1C为正方形,∴BC1⊥B1C,而A1B1⊥平面BB1C1C,∴A1C在平面BB1C1C上的射影是B1C,由三垂线定理得A1C⊥BC1(3)∵直三棱柱的侧面均为矩形,而D、E分别为所在侧面对角线的交点,∴D为A1C的中点,E为B1C的中点,∴DE∥A1B1,而由(1)知A1B1⊥平面BB1C1C,∴DE⊥平面BB1C1C.思维点拨:选择恰当的方法证明线面垂直.四、小结1、直线与平面垂直是直线与平面相交的一种特殊情况,应熟练掌握直线与平面垂直的定义、判定定理、性质定理,并能依据条件灵活运用.2、注意线面垂直与线线垂直的关系和转化.3、距离离不开垂直,因此求距离问题的过程实质上是论证线面关系(平行与垂直)与解三角形的过程,值得注意的是“作、证、算、答”是立体几何计算题不可缺少的步骤.在证明两平面垂直时,一般方法是先从现有的直线中寻找平面的垂线;若没有这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论根据并要有利于证明,不能随意添加.在有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直.解决这类问题的关键是熟练掌握“线线垂直”“线面垂直”,“面面垂直”间的转化条件和转化应用.五、课后反思在证明两平面垂直时,一般方法是先从现有的直线中寻找平面的垂线;若没有这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论根据并要有利于证明,不能随意添加.在有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直.解决这类问题的关键是熟练掌握“线线垂直”“线面垂直”,“面面垂直”间的转化条件和转化应用.六、课外作业课后练习A、B.

收藏

分享

举报
下载此文档