表示没有用水洗时,蔬菜上的农药量将保持原样.(2)函数f(x)应该满足的条件和具有的性质是:f(0)=1,f(1)=,在[0,+∞)上f(x)单调递减,且0<f(x)≤1.(3)设仅清洗一次,残留的农药量为f1=,清洗两次后,残留的农药量为f2=,则f1-f2=.于是,当a>2时,f1>f2;当a=2时,f1=f2;当0<a<2时,f1<f2.因此,当a>2时,清洗两次后残留的农药量较少;当a=2时,两种清洗方法具有相同的效果;当0<a<2时,一次清洗残留的农药量较少.点评:本题主要考查运用所学数学知识和方法解决实际问题的能力。以及函数概念、性质和不等式证明的基本方法。题型6:指数、对数型函数例11.有一个湖泊受污染,其湖水的容量为V立方米,每天流入湖的水量等于流出湖的水量。现假设下雨和蒸发平衡,且污染物和湖水均匀混合。用,表示某一时刻一立方米湖水中所含污染物的克数(我们称其湖水污染质量分数),表示湖水污染初始质量分数。(1)当湖水污染质量分数为常数时,求湖水污染初始质量分数;(2)分析时,湖水的污染程度如何。解析:(1)设,因为为常数,,即,则;(2)设,=因为,,。污染越来越严重。点评:通过研究指数函数的性质解释实际问题。我们要掌握底数两种基本情况下函数的性质特别是单调性和值域的差别,它能帮我们解释具体问题。譬如向题目中出现的“污染越来越严重”还是“污染越来越轻”例12.现有某种细胞100个,其中有占总数的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过个?(参考数据:).解析:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数,1小时后,细胞总数为;2小时后,细胞总数为;3小时后,细胞总数为;4小时后,细胞总数为;可见,细胞总数与时间(小时)之间的函数关系为:,由,得,两边取以10为底的对数,得,∴,∵,∴.