电磁阀启动液压系统,推动摇臂内的小活塞,使三根摇臂锁成一体,一起由中间凸轮c驱动,由于中间凸轮比其它凸轮都高,升程大,所以进气门开启时间延长,升程也增大了。当发动机转速降低到某一个设定的低转速时,摇臂内的液压也随之降低,活塞在回位弹簧作用下退回原位,三根摇臂分开。Р整个VTEC系统由发动机电子控制单元(ECU)控制,ECU接收发动机传感器(包括转速、进气压力、车速、水温等)的参数并进行处理,输出相应的控制信号,通过电磁阀调节摇臂活塞液压系统,从而使发动机在不同的转速工况下由不同的凸轮控制,影响进气门的开度和时间。Р4.3 汽车稀燃发动机的技术的应用Р系统根据车辆所处的不同行驶状况,利用DBW电子线控系统对节流阀进行控制,对两个进气门其中一个的关闭时机进行管理,当车辆处于巡航行驶等低负荷状态时,控制减少泵气损失,当车辆处于起步、加速等需要高输出功率和大扭矩时,通过控制使进气效率最大化。这样,当车辆在低负荷行驶时,由于泵气损失导致能效恶化的情况得到大幅度改善,由此实现了高扭矩的强劲行驶,同时达到了1.8升汽油发动机全球最低的油耗水平。特别是在定速巡航行驶时,其燃油经济性能与1.5升汽油发动机基本相同。Р通过延缓进气门的关闭时机,降低泵气损失,降低定速巡航行驶时的油耗。Р延缓进气门的关闭时机,使其在压缩行程开始一段时间之后关闭,让吸入气缸内的一部分混合气体重新返回进气管中。这样,即使不关小节流阀,也可以限制进气量。进气阻力的降低,最高可以减少16%的泵气损耗,从而提高了能源效率,通过节流阀开放程度大小、车速、发动机转速以及齿轮状态等检测车辆的行驶状况,对气门的开关时机进行智能化控制。对气门开关时机控制是通过同步活塞对位于进气一侧的怠速/加速摇臂和定位巡航行驶摇臂进行连接和分离操作实现的。同步活塞的连接/分离操作中使用了可以在低转速区进行切换的油压回路。这就是发动机的稀燃控制方案。