面积为2.Р (1)求该反比例函数的解析式.Р(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小.Р25.如图,已知Rt△ABC的锐角顶点A在反比例函数y=的图象上,且△AOB的面积为3,OB=3,求:(1)点A的坐标;(2)函数y=的解析式;(3)直线AC的函数关系式为y=x+,求△ABC的面积?Р四、应用题(7分,9分,计16分)Р26.某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55─0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)成反比例,又当x=0.65时,y=0.8.求:Р (1)y与x之间的函数关系式;(2)若电价调至0.6元时,本年度的用电量是多少?Р27.某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请你根据题中所提供的信息,解答下列问题.Р (1)药物燃烧时y关于x的函数关系式为________,自变量x的取值范围是______;药物燃烧后y与x的函数关系式为__________.Р (2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少多少分钟后学生才能回到教室?Р (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?Р28.已知,如图,反比例函数y=- 与一次函数y=-x+2的图象交于A、B两点。求:(1)A、B两点的坐标。 Р(2)△AOB的面积。Р29.若A(-2,a),B(-1,b),C(3,c)都在双曲线y=k/x(K大于0),比较a,b,c大小。