全文预览

高一数学必修4第三章+三角恒等变换

上传者:随心@流浪 |  格式:doc  |  页数:24 |  大小:464KB

文档介绍
展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.思考:,,再利用两角差的余弦公式得出(三)例题讲解例1、利用和、差角余弦公式求、的值.解:分析:把、构造成两个特殊角的和、差.点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.例2、已知,是第三象限角,求的值.解:因为,由此得又因为是第三象限角,所以所以点评:注意角、的象限,也就是符号问题.(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.(五)作业:(胡仕伟)§3.1.2两角和与差的正弦、余弦、正切公式一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1.教学重点:两角和、差正弦和正切公式的推导过程及运用;2.教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、学法与教学用具学法:研讨式教学四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:;.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢?提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式..让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手).通过什么途径可以把上面的式子化成只含有、的形式呢?(分式分子、分母同时除以,得到.注意:以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?注意:.(二)例题讲解例1、已知是第四象限角,求的值.解:因为是第四象限角,得,,于是有两结果一样,我们能否用第一章知识证明?

收藏

分享

举报
下载此文档