系数为57.34MN/m。Р2.3.2 SVM的学习训练Р 首先进行核函数的选取,通过对多项式核函数、径向基函数(RBF)核函数、Sigmoid核函数的比较分析,发现σ=300的径向基函数核函数比较适合地铁车站深基坑围护结构最大变形值的预测问题。然后通过不同的参数的试验,发现C=10000,经过学习训练,得到13个支持向量,各个支持向量的αi-α*i及其对应的样本序号见表2,相应的m,而在施工过程中实测值为40mm,其相对误差仅为6.81%;SVM实测值与预测值对比图如图1。为了与SVM方法进行对比,用BP神经网络对表1数据进行训练,得出最大变形值预测结果为31.267mm,其相对误差约为21.83%。Р3 结论Р 1)由于支持向量机的优良特性,特别适合于地铁基坑施工中那些模糊、随机、不确定性、样本数有限和非线形的复杂问题。因此,基于统计学习理论的支持向量机方法在岩土工程中具有广泛的应用前景。Р 2)支持向量机具有完备的理论基础和严格的理论体系,SVM算法最终转化为二次寻优问题。从理论上说,得到的将是全局最优解,有效避免了神经网络易陷入的局部极值问题。同时通过非线性变换和核函数巧妙解决了高维数问题,使得其算法复杂度与样本维数无关,加速了训练学习速度。另外,它能根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,保证其有较好的泛化性能。Р 3)支持向量机的核函数参数以及惩罚参数C的选择,将直接影响到支持向量机的学习效率和推广能力。但支持向量机算法并没有给出易实现的选择内积核函数参数的一般办法。本文通过对核函数参数和惩罚参数C的测试,可以得到较合适的参数值。Р 4)无论是SVM方法还是BP神经网络方法都属于参数预报方法,其预测精度在很大程度上依赖于预测模型的输入和输出参数的代表性。基坑围护结构最大变形的支持向量机预测模型的可靠性和准确性,依赖对其各种影响因素的准确分析。