= OC,\r:.L.BOP=上LBOC=60° ,\r2\rNB=-=-1 BC= 3,\r2\r:.ON=森, 08=2石 ,\r:.点 P到 BC的最大距离PN=2-f3-寸5=-f3;\r@点 P的路径长为^ BC的长,\r..·-BC= n TT r = = 120 TT X 2森=硒 TT.\r^\r180 180 3\r(2) 由 (1) 中题意可知张角 乙CPB的度数始终为 120°'\r可得乙 CBP+乙BCP=60° ,\r又 ?圆 P是丛A'BC的内切圆 ,\r..乙CBA'+乙BCA'= l20° ,\r:.乙CA'B=60° ,\r:.A'是等边 三角形 ABC外接圆 上优弧 BAC上的一动点 ,\r由题意可得等边三角形ABC外接圆的半径为 2-/3,\r.二点A'的路径是优弧BAC的长度,即以 240° 的圆心角,半径为2-/3的弧长,\r如图,所以点A'的路径长=旦庄王=240冗 X2J5=趴厅冗'\r180 180 3\r.\r, /\rI\rI\rI\r,\rji\r1 ,c\rI I\rB I\r,\r。-'`\r..硒冗硒六 = 2: 1,\r3 3\r:.点 A'的路 径长是点 P 的路 径长的 2倍 .\r【点评 】 本题考查 了等边三角形的性质 , 圆的有关性质,弧长公式等,解题的关键是能\r够根据题意 画 出图形 .\r