全文预览

钢琴的销售存储策略

上传者:幸福人生 |  格式:docx  |  页数:4 |  大小:48KB

文档介绍
321)该存储策略(第?n周)失去机会的概率为?P(Dn?Sn)按照全概率公式有3P(DnSn)P(Dni|Sni)P(Sni)i2其中,i2时,P(Dn2|Sn2)0.0803i3时,P(Dn3|Sn3)0.0190P(DnSn)0.08030.36790.01900.63210.0416即从长期来看,失去销售机会的可能性大约为10%。在计算该存储策略(第?n周)的平均销售量?Rn时,应该注意到当需求超过存储量时只能销售掉存量,于是3i1Rn)i)jP(Dnj|Sni)iP(Dni|SniP(Sni2j1i2时,1?P(Dn?1|Sn?2)?2?P(Dn?2|Sn?2)0.8963i3时,1P(Dn1|Sn3)2P(Dn2|Sn3)3P(Dn3|Sn3)0.9766Rn0.86390.36790.97660.63210.9471即从长期来看,每周的平均销售量为0.9741架。敏感性分析这个模型用到的唯一一个原始数据是平均每天售出?1架钢琴,根据上面求出的结果,发现这个数值会有波动,为了计算当平均需求字在?1附近波动时,最终结果有多大变化,因此,设Dn服从均值为的泊松分布即有kP(Dnk)ek!(k0,1,2,)有此得到的状态矩阵为e1eP1ee(e1e)31213)1e2P(DnSn)P(Dni|Sni)P(Sni)1-e(1i2266对于不同的需求值(在1附近波动),按照上面的计算过程,可以得到下面的结果:0.80.91.01.11.2P(DnSn)0.04270.04100.04160.04420.0489因此,当平均需求增长(或减少)10%时,失去销售的机会的概率将增加(或减少)约1.46%,因此在这个范围内变化,还是可以接受的。参考文献[1]姜启源.数学建模[M].北京:高等教育出版社?2009.[2]汪晓银.数学软件与数学实验?[M].北京:科学出版社2008.

收藏

分享

举报
下载此文档