与所成的角;(2)在线段上是否存在点F,使CF⊥平面,若存在,求出;若不存在,说明理由.21.(12分)已知双曲线C:(a>0,b>0),B是右顶点,F是右焦点,点A在x轴正半轴上,且满足、、成等比数列,过F作双曲线C在第一、第三象限的渐近线的垂线l,垂足为P.(1)求证:;(2)若l与双曲线C的左、右两支分别相交于点D、E,求双曲线C的离心率e的取值范围.22.(14分)设函数,,且方程有实根.(1)证明:-3<c≤-1且b≥0;(2)若m是方程的一个实根,判断的正负并加以证明.参考答案1.(文)A(理)C2.(文)A(理)B3.C4.(文)D(理)B5.(文)D(理)C6.A7.C8.B9.A10.D11.A12.C13.3314.715.1816.只要写出-4c,2c,c(c≠0)中一组即可,如-4,2,1等17.解析:.18.解析:(1)由,,成等差数列,得,若q=1,则,,由≠0得,与题意不符,所以q≠1.由,得.整理,得,由q≠0,1,得.(2)由(1)知:,,所以,,成等差数列.19.解析:(1)记“摸出两个球,两球恰好颜色不同”为A,摸出两个球共有方法种,其中,两球一白一黑有种.∴.(2)法一:记摸出一球,放回后再摸出一个球“两球恰好颜色不同”为B,摸出一球得白球的概率为,摸出一球得黑球的概率为,∴P(B)=0.4×0.6+0.6+×0.4=0.48法二:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”.∴∴“有放回摸两次,颜色不同”的概率为.20.解析:(甲)(1)∵△为以点M为直角顶点的等腰直角三角形,∴且.∵正三棱柱,∴底面ABC.∴在底面内的射影为CM,AM⊥CM.∵底面ABC为边长为a的正三角形,∴点M为BC边的中点.(2)过点C作CH⊥,由(1)知AM⊥且AM⊥CM,∴AM⊥平面∵CH在平面内,∴CH⊥AM,∴CH⊥平面,由(1)知,,且.