柱为正三棱柱,则,B,,C的坐标分别为:(b,0,0),,,,,,,(0,0,a).∴,,,,,.(2)在(1)条件下,不妨设b=2,则,又A,M,N坐标分别为(b,0,a),(,,0),(,,a).∴,.∴同理.∴△与△均为以为底边的等腰三角形,取中点为P,则,为二面角的平面角,而点P坐标为(1,0,),∴,,.同理,,.∴.∴∠NPM=90°二面角的大小等于90°.19.解析:设派x名消防员前去救火,用t分钟将火扑灭,总损失为y,则y=灭火劳务津贴+车辆、器械装备费+森林损失费=125tx+100x+60(500+100t)===当且仅当,即x=27时,y有最小值36450.故应该派27名消防员前去救火,才能使总损失最少,最少损失为36450元.20.解析:(1)当A、B、C三点不共线时,由三角形中线性质知;当A,B,C三点共线时,由在线段BC外侧,由或x=5,因此,当x=1或x=5时,有,同时也满足:.当A、B、C不共线时,定义域为[1,5].(2)(理)∵.∴d=y+x-1=.令t=x-3,由,,两边对t求导得:关于t在[-2,2]上单调增.∴当t=2时,=3,此时x=1.当t=2时,=7.此时x=5.故d的取值范围为[3,7].(文)由且,,∴当x=3时,.当x=1或5时,.∴y的取值范围为[,3].21.解析:(1)令,令y=-x,则在(-1,1)上是奇函数.(2)设,则,而,.即当时,.∴f(x)在(0,1)上单调递减.(3)(理)由于,,,∴.22.解析:(理)由平面,连AH并延长并BC于M.则由H为△ABC的垂心.∴AM⊥BC.于是BC⊥平面OAHOH⊥BC.同理可证:平面ABC.又,,是空间中三个不共面的向量,由向量基本定理知,存在三个实数,,使得=a+b+c.由且==0b=c,同理.∴.①又AH⊥OH,∴=0②联立①及②,得③又由①,得,,,代入③得: