际问题。再通过两个生活中的实际问题得出两个具体的反比例函数,其目的是丰富具体的反比例函数的实例,增强学生对反比例函数的感性认识,为下面归纳、抽象反比例函数的概念做好铺垫.2、抽象概念[活动3]学生通过观察、比较、归纳发现四个具体的反比例函数共同特点,顺理成章地从对反比例函数的感性认识上升到理性认识,也自然的运用从特殊到一般的思维方法抽象归纳概括出反比例函数概念。从创设情景的问题串,到学生运用类比、比较等思想方法从多个函数中辨别出正比例函数、一次函数和反比例函数,再到从4个具体的反比函数中归纳出它们共同的特点,抽象出反比例函数的定义的过程,有效地突出重点,使学生领会了反比例函数的意义。归纳得反比例函数的定义,并引导学生剖析概念。运用类比思维方式让学生自己归纳定义,再一次使学生感受函数研究方法的一般性。通过对定义的剖析,使学生对反比例函数的表象认识上升到本质的认识,从而深刻理解反比例函数的概念,突破难点,为后续运用概念解决问题提供扎实的理论基础。(三)、即时训练、巩固新知让学生进一步感受反比例函数是一类反映现实世界特定数量关系的数学模型。学生利用已有的生活经验与刚刚形成的对反比例函数的认识,通过举例、说理、交流达到内化、升华、巩固反比例函数的意义,感受反比例函数与正比例函数的区别与联系,理解反比例函数概念,渗透函数建模的数学思想。(四)、随堂练习根据学生的差异设计以上三组由浅入深、循序渐进的练习题目,呈现出本节课的知识重点,检验了对重点知识的掌握情况以及对难点的理解程度。通过对相关问题的解答,使学生对本节课的知识的条理更清晰,理解更加透彻。(五)、课时小结,总结收获在独立思考和合作交流中引导学生梳理本节课在知识和数学思想方法方面的收获,形成知识网络,提升对数学思想方法的理性认识。在总结的同时让学生体验收获知识的快乐,培养敢于展示自我,敢说、敢问、自信的学习品质。布置作业深化知识