式是同类项,根据相同字母的指数相同列方程,得D点析:(1)同类项必须符合两个条件:第一所含字母相同,第二相同字母的指数相同,两者缺一不可.(2)根据同类项概念——相同字母的指数相同列方程(组)是解此类题的一般方法.4、下列运算中,正确的是( )A.a2·a3=a6B.a3÷a2=aC.(a3)2=a9D.a2+a2=a5[解析]因为a2·a3=a2+3=a5,a3÷a2=a3-2=a,(a3)2=a3×2=a6,a2+a2=2a2.故选B.点析:(1)进行整式的运算时,一要注意合理选择幂的运算法则,二要注意结果的符号.(2)不要把同底数幂的乘法和整式的加减法混淆,如a3·a5=a8和a3+a3=2a3.(am)n和an·am也容易混淆.(3)单项式的除法关键:注意区别“系数相除”与“同底数幂相除”的含义,如6a5÷3a2=(6÷3)a5-2=2a3,一定不能把同底数幂的指数相除.5、先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-[解析]按运算法则化简代数式,再代入求值.解:原式=4x2-9-4x2+4x+x2-4x+4=x2-5,当x=-时,原式=(-)2-5=3-5=-2.点析:整式的运算顺序是:先计算乘除,再做整式的加减,整式加减的实质就是合并同类项,其中能运用乘法公式计算的应采用乘法公式进行计算.6、分解因式(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)2[解析]首先把x-1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解.(x-1)2-2(x-1)+1=(x-1-1)2=(x-2)2.点析:(1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提公因式时,若括号内合并的项有公因式应再次提取;注意符号的变换y-x=-(x