角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t的取值范围.8、使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。(1)求出函数y=的零点;(2)己知函数(m为常数)。①当=0时,求该函数的零点;②证明:无论取何值,该函数总有两个零点;③设函数的两个零点分别为和,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。9、设xi(i=1,2,3,…,n)为任意代数式,我们规定:y=max{x1,x2,…,xn}表示x1,x2,…,xn中的最大值,如y=max{1,2}=2.(1)求y=max{x,3};(2)借助函数图象,解不等式max{x+1,}≥2;(3)若y=max{|1﹣x|,x+a,x2﹣4x+3}的最小值为1,求实数a的值.10、定义符号min的含义为:当a≥b时,min=b;当a<b时,min=a.如:min=-2,min=-1.(1)求min;(2)已知min{x2-2x+k,-3}=-3,求实数k的取值范围;(3)已知当-2≤x≤3时,min{x2-2x-15,m(x+1)}=x2-2x-15.直接写出实数m的取值范围.