全文预览

2020年北京市各区中考数学二模试卷分类汇编---几何压轴题资料

上传者:相惜 |  格式:doc  |  页数:22 |  大小:755KB

文档介绍
,证明四边形CMDN是平行四边形,得到DN=CM,进而证明△ADN是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN是平行四边形,推得∠APM=45°.使问题得以解决.请你参考上面同学的思路,用另一种方法证明∠APM=45°.8石景山28.已知在中,,,点为射线上一点(与点不重合),过点作⊥于点,且(点与点在射线同侧),连接,.(1)如图,当点在线段上时,请直接写出的度数.(2)当点在线段的延长线上时,依题意在图中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,与相交于点,若,直接写出的最大值.图1图2备用图9顺义28.在△ABC中,AB=AC,D为线段BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠B=30°,AC=3,请补全图形并求DE的长;(2)如图2,若BE=2CD,连接CE并延长,交AB于点F,小明通过观察、实验提出猜想:CE=2EF.小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过A作AM∥BC交CF的延长线于点M,先证出△ABE≌△CAD,再证出△AEM是等腰三角形即可;想法2:过D作DN∥AB交CE于点N,先证出△ABE≌△CAD,再证点N为线段CE的中点即可.请你参考上面的想法,帮助小明证明CE=2EF.(一种方法即可)10通州28.在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否依然成立.图1图2图311西城

收藏

分享

举报
下载此文档