地区用户的满意度等级为满意”,则CA1与CB1独立,CA2与CB2独立,CB1与CB2互斥,C=CB1CA1∪CB2CA2.P(C)=P(CB1CA1∪CB2CA2)=P(CB1CA1)+P(CB2CA2)=P(CB1)P(CA1)+P(CB2)P(CA2).由所给数据得CA1,CA2,CB1,CB2发生的频率分别为,,,,即P(CA1)=,P(CA2)=,P(CB1)=,P(CB2)=,故P(C)=×+×=0.48.题型四:统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得xi=80,yi=20,xiyi=184,x=720.(1)求家庭的月储蓄y对月收入x的线性回归方程=x+;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程=x+中,=,=y-,其中,为样本平均值.解(1)由题意知n=10,=xi==8,=yi==2,又lxx=x-n2=720-10×82=80,lxy=xiyi-n=184-10×8×2=24,由此得===0.3,=y-=2-0.3×8=-0.4,故所求线性回归方程为=0.3x-0.4.(2)由于变量y的值随x值的增加而增加(=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.