的概率是( )A.?B.?C.?D.【考点】几何概型;一元二次不等式的解法.菁优网版权所有【专题】计算题.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键二.填空题(共4小题)13.(2015•景洪市校级模拟)在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率 1﹣.【考点】几何概型.菁优网版权所有【专题】计算题.【分析】本题利用几何概型求解.只须求出满足:OQ≥1几何体的体积,再将求得的体积值与整个正方体的体积求比值即得.【解答】解:取到的点到正方体中心的距离小于等于1构成的几何体的体积为:×13=,∴点到正方体中心的距离大于1的几何体的体积为:v=V正方体﹣=8﹣取到的点到正方体中心的距离大于1的概率:P==1﹣.故答案为:1﹣.【点评】本小题主要考查几何概型、球的体积公式、正方体的体积公式等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题. 14.(2015•上海模拟)从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为.【考点】等可能事件的概率.菁优网版权所有【专题】计算题.【分析】由题意列出选出二个人的所有情况,再根据等可能性求出事件“甲被选中”的概率.【解答】解:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为.