的一点到角的两边距离相等”这一结论在苏科版义务教育数学教材八上的《1.4线段、角的轴对称性》以及九上的《1.2直角三角形全等的判定》中都有所出现。请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义。答:八上从图形变换角度出发,利用轴对称性,通过图形变换,想象、类比、归纳得出结论,重点发展学生几何直观能力、合情推理能力;九上是从证明的角度出发,通过演绎推理得出结论,有相对严密的逻辑体系,重点发展学生的演绎推理能力、逻辑思维能力。两者的区别是:出发点答:八上从图形变换角度出发,利用轴对称性,通过图形变换,想象、类比、归纳得出结论,重点发展学生几何直观能力、合情推理能力;九上是从证明的角度出发,通过演绎推理得出结论,有相对严密的逻辑体系,重点发展学生的演绎推理能力、逻辑思维能力。论的方法不同、对学生能力要求不同。联系是:几何直观、合情推理是逻辑思维、演绎推理的前提和基础,而后者是前者的深化与发展。这种安排充分考虑到学生的年龄与心理特征,遵循学生的认知规律,为学生搭建思维脚手架,促进学生思维能力螺旋上升22.证明勾股定理,并说明你证明时使用的数学思想和方法。23.“函数”是贯穿整个中学数学阶段的最重要内容,也是学生学习感到困难的内容。(1)请简要说出函数概念的发展历史;(2)用新课程的观点谈如何使学生理解函数概念。24.从三维目标的角度论述“零指数幂和负整数指数幂”的教学目标。25.苏科版《九年级数学》下册有这样一道例题:室内通风和采光主要取决于门窗的个数和每个门窗的透光面积,如果计划用一段长12m的铝合金型材,制作一个上部是半圆,下部是矩形的窗框,那么当矩形的长宽分、别是多少时,才能使该窗户的透光面积最大?请你在此题的基础上,对该题改编和编题,并给出解答和评分标准(假设满分为12分)原题见《二次函数》(苏科版九下)例题