换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(I)求的分布列;(II)若要求,确定的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?20.(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.(21)(本小题满分12分)已知函数有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,证明:+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(I)证明:直线AB与⊙O相切(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0)。在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(II)直线C3的极坐标方程为,其中满足tan=2,若曲线C1与C2的公共点都在C3上,求a。(24)(本小题满分10分),选修4—5:不等式选讲已知函数f(x)=∣x+1∣-∣2x-3∣.(I)在答题卡第(24)题图中画出y=f(x)的图像;(II)求不等式∣f(x)∣﹥1的解集。