答】解:若5x+1=131,即5x=130,解得:x=26,若5x+1=26,即5x=25,解得:x=5,若5x+1=5,即x=,则满足条件的x的值是,5,26.故选:D.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a= 3 .【分析】将x=1代入方程得到关于a的方程,解之可得.【解答】解:根据题意,将x=1代入ax+1=4,得:a+1=4,解得:a=3,故答案为:3.【点评】本题主要考查一元一次方程的解,解题的关键是熟练掌握方程的解的定义.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3= 180° .【分析】根据对顶角、邻补角的性质,可得∠1=∠2,∠1+∠3=180°,则∠2+∠3=∠1+∠3=180°.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是邻补角,∴∠1+∠3=180°,等角代换得∠2+∠3=180°,故答案为:180°.【点评】本题主要考查对顶角的性质以及邻补角的定义,熟记对顶角和邻补角的性质是解题的关键.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k= 1 .【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵2x3﹣2k+2k=41是关于x的一元一次方程,∴3﹣2k=1,解得:k=1.故答案为:1.【点评】此题主要考查了一元一次方程的定义,正确把握次数为1是解题关键.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为 70° .【分析】依据∠1=∠2,即可得出AB∥CD,进而得到∠3+∠4=180°,再根据∠3=110°,即可得到∠4=70°.【解答】解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴AB∥CD,∴∠3+∠4=180°,又∵∠3=110°,∴∠4=70°,