全文预览

2016-2017学年四川省成都高一(上)期末数学试卷((有答案))

上传者:徐小白 |  格式:doc  |  页数:12 |  大小:302KB

文档介绍
I)求与的夹角的大小.【解答】解:(Ⅰ)∵.∴=,即+=0…(2分)∴2(7x﹣4)+50=0,解得x=﹣3…(5分)(Ⅱ)设与的夹角为θ,=(﹣3,4),=(7,﹣1),∴=﹣21﹣4=﹣25,…(6分)且==5,=5…(8分),∴.…(9分)∵θ∈[0,π],∴,即a,b夹角为.…(10分) 18.(12分)已知.(I)求tanα的值;(II)若﹣π<α<0,求sinα+cosα的值.【解答】解:(I)∵已知,可得3sinα=﹣6cosα,∴.(Ⅱ)∵α∈(﹣π,0),且tanα==﹣2,sinα<0,sin2α+cos2α=1,∴,∴,∴. 19.(12分)如图,在△ABC中,M为BC的中点,.(I)以,为基底表示和;(II)若∠ACB=120°,CB=4,,求CA的长.【解答】解:(Ⅰ)=+=﹣+=﹣+;∴,(Ⅱ),得,即,展开得,又∵∠ACB=120°,CB=4,∴,即,解得,即CA=8为所求 20.(12分)某地政府落实党中央“精准扶贫”政策,解决一贫困山村的人畜用水困难,拟修建一个底面为正方形(由地形限制边长不超过10m)的无盖长方体蓄水池,设计蓄水量为800m3.已知底面造价为160元/m2,侧面造价为100元/m2.(I)将蓄水池总造价f(x)(单位:元)表示为底面边长x(单位:m)的函数;(II)运用函数的单调性定义及相关知识,求蓄水池总造价f(x)的最小值.【解答】解:(Ⅰ)设蓄水池高为h,则,…(2分)∴…(4分)=…(6分)(Ⅱ)任取x1,x2∈(0,10],且x1<x2,则=…(8分)∵0<x1<x2≤10,∴x1x2>0,x1﹣x2<0,x1x2(x1+x2)<2000,∴y=f(x1)﹣f(x2),即f(x1)>f(x2),∴y=f(x)在x∈(0,10]上单调递减…(10分)故x=10当时,fmin(x)=f(10)=48000…(11分)

收藏

分享

举报
下载此文档