全文预览

抽象函数单调性奇偶性、周期性和对称性典例分析[1]

上传者:梦&殇 |  格式:doc  |  页数:14 |  大小:690KB

文档介绍
称性三、函数周期性的几个重要结论1、()的周期为,()也是函数的周期2、的周期为3、的周期为4、的周期为5、的周期为6、的周期为7、的周期为8、的周期为9、的周期为10、若11、有两条对称轴和周期推论:偶函数满足周期12、有两个对称中心和周期推论:奇函数满足周期13、有一条对称轴和一个对称中心的四、用函数奇偶性、周期性与对称性解题的常见类型灵活应用函数奇偶性、周期性与对称性,可巧妙的解答某些数学问题,它对训练学生分析问题与解决问题的能力有重要作用.下面通过实例说明其应用类型。答案1.求函数值例1.(1996年高考题)设是上的奇函数,当时,,则等于(-0.5)(A)0.5;(B)-0.5;(C)1.5;(D)-1.5.例2.(1989年北京市中学生数学竞赛题)已知是定义在实数集上的函数,且,求的值.。2、比较函数值大小例3.若是以2为周期的偶函数,当时,试比较、、的大小.解:是以2为周期的偶函数,又在上是增函数,且,3、求函数解析式例4.(1989年高考题)设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.解:设时,有是以2为周期的函数,.例5.设是定义在上以2为周期的周期函数,且是偶函数,在区间上,求时,的解析式.解:当,即,又是以2为周期的周期函数,于是当,即时,4、判断函数奇偶性例6.已知的周期为4,且等式对任意均成立,判断函数的奇偶性.解:由的周期为4,得,由得,故为偶函数.5、确定函数图象与轴交点的个数例7.设函数对任意实数满足,判断函数图象在区间上与轴至少有多少个交点.解:由题设知函数图象关于直线和对称,又由函数的性质得是以10为周期的函数.在一个周期区间上,故图象与轴至少有2个交点.而区间有6个周期,故在闭区间上图象与轴至少有13个交点.6、在数列中的应用例8.在数列中,,求数列的通项公式,并计算分析:此题的思路与例2思路类似.解:令则

收藏

分享

举报
下载此文档