两根间距为l的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段部分组成,其水平段加有竖直向下方向的匀强磁场,磁感应强度为B,导轨水平段上静止放置一金属棒cd,质量为2m,电阻为2r.另一质量为m,电阻为r的金属棒ab,从圆弧段M处由静止释放下滑至N处进入水平段,棒与导轨始终垂直且接触良好,圆弧段MN半径为R,所对圆心角为60°.求:图1(1)ab棒在N处进入磁场区速度是多大?此时棒中电流是多少?(2)cd棒能达到的最大速度是多大?(3)cd棒由静止到达最大速度过程中,系统所能释放的热量是多少?答案(1) (2) (3)mgR解析(1)ab棒由M下滑到N过程中机械能守恒,故mgR(1-cos60°)=mv2.解得v=.进入磁场区瞬间,回路中电流强度I==.(2)ab棒在安培力作用下做减速运动,cd棒在安培力作用下做加速运动,当两棒速度达到相同速度v′时,电路中电流为零,安培力为零,cd达到最大速度.运用动量守恒定律得mv=(2m+m)v′解得v′=.(3)系统释放的热量应等于系统机械能的减少量,故Q=mv2-·3mv′2,解得Q=mgR.2.如图2所示是计算机模拟出的一种宇宙空间的情景,在此宇宙空间内存在这样一个远离其他空间的区域(其他星体对该区域内物体的引力忽略不计),以MN为界,上半部分匀强磁场的磁感应强度为B1,下半部分匀强磁场的磁感应强度为B2.已知B1=4B2=4B0,磁场方向相同,且磁场区域足够大.在距离界线MN为h的P点有一宇航员处于静止状态,宇航员以平行于MN的速度向右抛出一质量为m、电荷量为q的带负电小球,发现小球在界线处的速度方向与界线成90°角,接着小球进入下半部分磁场.当宇航员沿与界线平行的直线匀速到达目标Q点时,刚好又接住球而静止.图2(1)请你粗略地作出小球从P点运动到Q点的运动轨迹;(2)PQ间的距离是多大?(3)宇航员的质量是多少?