Р∴∠BAC-∠DAC=∠DAE-∠DAC,Р即∠BAD=∠CAE.Р又∵=,即=,Р∴△BAD∽△CAE,∴∠ABF=∠FCE.Р又∵∠AFB=∠EFC,∴△ABF∽△ECF.Р由△ABC∽△ADE,得∠ACB=∠AEF.Р又∵∠AFE=∠BFC,∴△AEF∽△BCF.Р7.[答案] 4Р[解析] ∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,∠ACB+∠A=90°.Р∵AC⊥CE,∴∠ACB+∠ECD=90°,Р∴∠A=∠ECD,Р∴△ABC∽△CDE,∴=.Р又∵C是线段BD的中点,BD=4,Р∴BC=CD=2,∴=,∴AB=4.Р8.证明:∵CD⊥AB,E为斜边AC的中点,Р∴DE=CE=AE=AC,∴∠EDA=∠A.Р∵∠EDA=∠FDB,Р∴∠A=∠FDB.Р∵∠ACB=∠CDA=90°,Р∴∠A+∠ACD=∠FCD+∠ACD=90°,Р∴∠A=∠FCD,∴∠FDB=∠FCD.Р又∵∠F=∠F,∴△FDB∽△FCD,Р∴=,Р∴BD·CF=CD·DF.Р9.[解析] D 由∠ADE=∠B=∠C=α,得∠BAD+∠ADB=180°-α=∠ADB+∠CDE,得∠BAD=∠CDE,于是△ABD∽△DCE,又易证△ADE∽△ACD,故①正确;设BD=x,由△ABD∽△DCE得=,∴CE===-(x-8)2+6.4,故CE长的最大值为6.4,②正确;当AD=DC时,∠DAC=∠C=∠B,易证△ABC∽△DAC,得=,即=,解得BD=,③正确.Р10.解:△ECH,△GFH,△GAD均与△DBE相似.Р如选△DBE∽△GAD证明如下:Р∵△ABC与△DEF均为等边三角形,Р∴∠A=∠EDF=60°.Р又∵∠BDG=∠BDE+∠EDF,∠BDG=∠A+∠AGD,Р即∠BDE+60°=∠AGD+60°,Р∴∠BDE=∠AGD.Р又∵∠B=∠A=60°,Р∴△DBE∽△GAD.