15 13/30Р三、课堂小结:请同学们谈谈今天复习的体会。Р教学反思:Р《分数的意义和性质》是本学期的重要章节,内容多,涉及知识面广,且对六年级分数乘除法有着直接影响。因此,我将“分数的意义与性质”和“分数的加减法”分为两课时完成。Р[教学困惑] 教材141页第3题为什么要将每两个数字之间的线段平均分成5份?要表示的6个数中,仅仅只有2又3/5可以借助这些点。那么这些点在此题中起什么作用呢?Р纵观本单元教材,70、73、77、87页都有在数轴上描点或根据所描点写分数的练习。但在是否将单位“1”平均分上有明确的区分。如73页第6题将单位“1”平均分成5份,此题所写的分数分母全都是“5”。而77、87页的数轴则没有将单位“1”平均分,因为它们所要表示的分数分母各不相同。这题是教材印刷时出错了吗?还是……?Р1.分不清何时是用分数表示量,何时是用分数表示分率?两者的求法有什么区别与联系?Р可引导学生从问题的表述及单位入手深入分析。一般带单位的是具体的数量,而问“占总数的()”则表示求两者之间的关系。求具体的数量是把条件中的数量平均分成若干份,求每份是多少。求分率则是把总量看作单位“1”,将单位“1”平均分成若干份,求每份占总数的几分之一。它们之间的联系是由于平均分的份数相同,所以分母相同。区别是由于一个是将具体数量分,一个是将单位“1”分,所以分子不同、当然分数所表示的意义也不相同。Р2.对于“1个饼的3/4也就是3个饼的1/4”无法理解。Р我很赞同“随着年龄的增长,孩子们暂时无法理解的内容稍大以后自然就能顺利理解与掌握”的说法。我相信到六年级上册学习完分数的乘法后,上述问题将不再是学生的难点。可如今,不利用数形结合的演示讲解,学生就是难以认同。为此,我不仅画了分饼的示意图,还结合“3米的1/5和1米的3/5”画了线段图,结合分数的意义和分数的加法,学生终于明白了其中的道理。