涂色结果来让学生得到结果,并明确把1公顷看作单位“1”,求公顷的是多少,其实就是把1公顷平均分成(2×5)份,取其中的一份,也就是,从而得出Р。当然,在动手操作探索的过程中,应该充分尊重学生的思考,允许学生用多种方法来对结果进行说明验证。鉴于学生的学习理解能力,教师也可以在讲课开始之时先提供一些图例,让学生们通过看图来直观感知“几分之一的几分之一”表示的是什么,感受两个分数相乘会产生一个新的分数,对学生的理解也会有很大的帮助。Р (2)引导观察、讨论、归纳推导出分数乘法的计算方法。计算方法的获取、表达如果来自于学生自己的思考,学生会掌握得更扎实。在教学中,教师可以结合例题的教学,让学生通过画图对算法进行理解;从计算分子为1的乘法算式算理的理解,到的计算,由易到难逐步进行;在对算法理解的基础上进行大胆、合理的猜想并进行验证;让学生经历“观察——讨论——猜想——验证——得出结论”的过程,使得他们在不断观察、不断发现、不断归纳的过程中总结出分数乘分数的计算方法。Р 3. 应用分数乘法解决简单的实际问题Р 突破建议:Р(1)紧密联系分数乘法的意义,引导学生在理解数量关系的基础上正确列式,解决实际问题。 Р(2)有效运用画图策略,帮助学生分析和解决问题。如连续求一个数的几分之几是多少的问题和求比一个数多(或少)几分之几的数是多少的问题,数量关系比较复杂,用线段图等方式可以比较清晰、直观地表示出数量之间的关系。教学时要有效运用画图策略,帮助学生理解题意,分析数量关系。可以先从会看示意图入手,逐步学会画图分析数量关系,不断提高学生分析问题和解决问题的能力。Р教学Р对策Р1.在已有知识的基础上,帮助学生自主构建新知识。Р2.通过操作和直观图示帮助学生理解分数乘法的算理,掌握计算方法。Р3.紧密联系分数乘法的意义,引导学生在理解数量关系的基础上正确列式,解决实际问题。