“试一试,你能行!”Р在一次函数的图象上有两点A和B,比较与的大小关系。Р此题由学生独立思考解答后,分小组进行讨论,交流不同的解题思路,老师参与学生讨论,及时发现、收集不同的解题方法,并利用投影展示学生不同的解题思路过程,学生可能会有以下方法:Р预案1:用一次函数的性质解决;预案2:用函数图象的方法比较;预案3:用代入求值的方法比较。Р对于学生中出现的不同解题方法,引导学生共同探究解题方法的优劣,进一步明确正确掌握一次函数y=kx+b(k)的性质是解题的关键。Р本阶段通过一题多解,培养学生思维的灵活性、发散性,体验解题策略的多样性,加深巩固掌握一次函数y=kx+b(k)的性质,深入体会数形结合思想。Р⑷课堂小结,回顾知识Р为了使学生对本节课所学内容有一个整体的感知,向学生提出三个问题:Р本节课:我学会了……我经历了……我感触最深(最困惑)的是……Р学生在自由讨论、发言补充的过程中,回顾了本节课的学习内容和重点。结合学生的发言,我引导学生进一步从知识与技能、过程与方法等方面进行归纳总结。Р①生活中处处有数学,要善于发现问题、解决问题,掌握一次函数y=kx+b(k)的性质是解决某些问题的关键。Р②“观察、比较、分析、归纳、猜想、验证”是探究解决问题常用的策略;“数形结合”是解决问题常用的数学思想方法。Р本阶段通过学生小结,回顾知识,培养学生的归纳概括能力以及善于反思的能力,进一步体会“数形结合”的数学思想方法。Р本节课是在学生已经掌握一次函数的概念、图象并自主完成学案的基础上,从学生身边的生活实例入手,通过小组合作交流、展示汇报,经历观察、分析、猜想、归纳、发现一次函数性质的探究过程,通过几何画板的直观演示,增强对一次函数性质的感性认识,体会数形结合的思想。通过选取不同层次的例题和练习,培养学生思维的灵活性、发散性,体会多角度、多策略解决问题的方法,使不同的学生得到不同的发展。