D=∠COE,BD=CE,∴△BOD≌△COE,∴OD=OE,又由已知条件得△AOD和△AOE都是直角三角形,且OD=OE,OA=OA,∴Rt△AOD≌Rt△AOE,∴∠DAO=∠EAO,即AO平分∠BAC14.∵点P在AB的垂直平分线上,∴PA=PB,∵PC⊥PA,PD⊥PB,∴∠BPD=∠APC=90°,又AC=BD,∴Rt△APC≌Rt△BPD(H.L.),∴PD=PC,∴点P在线段CD的垂直平分线上15.∵AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴∠1=∠2,∵∠AED=∠AFD=90°,∴∠3=∠4,∴AE=AF,∵AD是等腰三角形AEF的顶角平分线,∴AD垂直平分EF(三线合一)16.(1)DF∥BC,理由是:∵AF平分∠BAC,∴∠CAF=∠DAF,在△CAF和△DAF中,AC=AD∠CAF=∠DAFAF=AF,∴△CAF≌△DAF(S.A.S.),∴∠ADF=∠ACF,∵CE⊥AB,∠ACB=90°,∴∠CEB=∠ACB=90°,∴∠ACF+∠BCF=90°,∠B+∠BCF=90°,∴∠B=∠ACF=∠ADF,∴DF∥BC(2)FG=EF,证明:∵DF∥BC,∠ACB=90°,∴∠AGF=∠ACB=90°,∴FG⊥AC,又∵CE⊥AB,AF平分∠CAB,∴FG=EF17.(1)过点D作DE⊥OB,交OB延长线于点E,DF⊥OC于F,∵OD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,DB=DCDE=DF,∴△DEB≌△DFC(H.L.),∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠EOF+[JP]∠EDF=180°,∠BOC=60°,∴∠BDC=∠EDF=120°(2)∵∠EOF+∠EDF=180°,∠BOC=α,∴∠BDC=∠EDF=180°-α.故答案为:180°-α