全文预览

初高中数学衔接知识点专题

上传者:徐小白 |  格式:doc  |  页数:15 |  大小:0KB

文档介绍
在坐标为3的点的左侧,在坐标为1的点的右侧.所以原不等式的解为.解法3:,所以原不等式的解为.(2)解法一:由,得;由,得;①若,不等式可变为,即>4,解得x<0,又x<1,∴x<0;②若,不等式可变为,即1>4,∴不存在满足条件的x;③若,不等式可变为,即>4,解得x>4.又x≥3,∴x>4.综上所述,原不等式的解为x<0,或x>4.解法二:如图,表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|=|x-1|;|x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|=|x-3|.所以,不等式>4的几何意义即为|PA|+|PB|>4.由|AB|=2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.所以原不等式的解为x<0,或x>4.例2(1)解:原式=说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.(2)原式=(3)原式=(4)原式=例3解:原式=例4解:原式=①②,把②代入①得原式=例5解:(1)原式=?(2)原式=说明:注意性质的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.(3)原式=(4)原式=例6解:原式=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.【巩固练习】1.2.3.或 4.5.6.专题二因式分解答案例1分析:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现,可看着是或.解:(1).(2)例2(1)分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.解:(2)分析:先将系数2提出后,得到,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:例5解:【巩固练习】1..2.;3.其他情况如下:;.4.

收藏

分享

举报
下载此文档