折 50次,我就能顺着它在今天晚上爬上月球。我们一起来分析一下这两个实例所包涵的数学问题。生:(1)由尺的长度得到数列: 1 1 1 , , , 2 4 8 …n12 …(2)由报纸的层数得到数列: 2,4,8,…,n2 ,…问:以上数列是等差数列吗?它们有何特点? (2) 明确问题的各个方面学生受到困难或令人困惑的问题环境后,需要探寻其他信息,以明确问题之所在。例如在上面得到的两个新数列后引导学生合作交流,发现数列的本质,明确此新数列的研究与等差数列的研究存在着相似性。引导学生回忆前面学习的等差数列的定义、通项、前 n项和的公式及其重要性质。问:那么,你认为从哪几个方面研究这个新的数列? ..页眉.. 页脚.. (3) 探求问题解决的方法在对数学问题有一个整体把握的基础上,让学生间充分地争论,探索问题解决的有效方法和途径,这是解决数学问题的关键。如我们如何来研究给等比数列下定义?如何导出等比数列的通项公式,找到 n,q,a ,a 之间的关系?引导学生提出各种不同的方案,通过类比、联想、比较、分析,找到最有效和简单的解决办法。(4) 实施计划即在确定解决问题的方案后,付诸实践,并在过程中对问题解决的方案进行合适的变更,使之更符合现实的问题情景。(5) 回顾反思数学问题解决后,要对过程进行反思,对结论进行讨论,如符合实际情况吗?还有其它方法可以验证吗? 等等。如问:(1)等比数列的公比 q可以是任意常数吗?能否为零?首项 a呢? (2)等比数列的各项的符号有什么特点? 问题,是思维的起点, 问题教学,是有效促进学生思维活动和自主学习能力的课堂教学方式之一。实施问题教学,一定要注意培养学生的问题意识,培养学生独立思考和合作学习的习惯和能力,只有这样,才能使学生的科学精神和人文素养和谐发展,把新课程的课堂教学改革真正落到实处。实验高中任明刚 0 2011 年十二月三十日