当旋转电磁铁得电后,旋转一定角度,带动凸轮旋转,使支撑杆在径向产生移动从而卡进管壁。电磁铁失电后,通过弹簧的作用使凸轮和支撑足复位,机器人放松。结构简图见图1-3。图1-3结构简图Diagram1-3structuresketchplans方案3为使用一推拉式电磁铁推动锥形滑块,同时设计三个长度可调的支撑杆,当电磁铁得电后,电磁铁推杆伸出并带动锥形滑块沿轴向前进。由于滑块为锥形,支撑足产生径向移动,机器人被卡紧[7]。电磁铁失电后,机器人放松,原理同方案2。结构简图见图1-4。图1-4结构简图Diagram1-4structuresketchplans综合比较以上三种方案,首先放弃了方案1,由于管道内空间有限,电磁铁的体积太大,无法合理的安放电磁铁,并且电磁铁的重量也相对较大,设计与之相应的连杆机构也很困难。方案2与方案3在原理上基本相同,不同之处在于方案2用的是凸轮,而方案3用的是锥形滑块。凸轮的结构复杂,且其表面需要非常光滑,由于凸轮曲面为复杂曲面,所以普通磨床难以加工,需用数控加工中心进行加工,这样加大了成本。经过综合比较决定选择方案3。另外,在卡紧方面也可使用气缸,此类型的设备已被开发,但由于空间问题并不适合于本设计,故本设计不使用该方法。1.4旋转方案的选择旋转部分采用一个旋转式步进电机,电机轴带动法兰,可在法兰上连接工作体,通过控制步进电机的转动角度来控制工作体的转动。结构如图1-5所示。图1-5Diagram1-51.5调节方案的选择由于本次设计的机器人要适应不同的管径,所以需要设计一个结构合理的可调机构。初步拟订3个方案,方案1采用一个推拉式电磁铁推动一个连杆机构,结构与卡紧方案1相似,结构简图见图1-2。通过控制推杆伸出的长度及连杆机构来调整支撑足。方案2也是一种连杆机构,结构见图1-6。通过调整螺栓来调整支撑足的高度。它的结构与汽车修理厂所用千斤顶相似。