向轮廓尺寸增大,而且降低了桥壳刚度,不利于齿轮工作。这种布置可便于贯通式驱动桥的布置。斜向布置对传动轴布置和提高桥壳刚度有利。在具有锥齿轮和圆柱齿轮的双级主减速器中分配传动比时,圆柱齿轮副和锥齿轮副传动比的比值一般为1.4~2.0,而且锥齿轮副传动比一般为1.7~3.3,这样可减小锥齿轮啮合时的轴向载荷和作用在从动锥齿轮及圆柱齿轮上的载荷,同时可使主动锥齿轮的齿数适当增多,使其支承轴颈的尺寸适当加大,以改善其支承刚度,提高啮合平稳性和工作可靠性。现代车桥中,齿轮润滑油的选择是至关重要的。汽车运行在高速公路上,车桥油温可以最终上升,甚至高于130℃,所以车桥外壳通风是很重要的。通过两个轴承携带的小齿轮来达到改善的目的。因此,形状和尺寸之间的间隙,套管等可能都是至关重要的,足够的排水必须提供的润滑油的流向,通过渠道流入小齿轮轴承座,再回到套管。在齿轮轴承中,圆锥滚子轴承普遍应用在齿轮。他们有大量的承载能力,通过稳定的、准确定位。法兰密封的齿轮对于抗高温和相对较高的速度是至关重要的。锥齿轮齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面宽过窄及刀尖圆角过小。这样,不但减小了齿根圆半径,加大了应力集中,还降低了刀具的使用寿命。此外,在安装时有位置偏差或由于制造、热处理变形等原因,使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间的减小。但是齿面过窄,轮齿表面的耐磨性会降低。为改善新齿轮的磨合,防止其在运行初期出现早期的磨损、擦伤、胶合或咬死,锥齿轮在热处理及精加工后,作厚度为0.005~0.020mm的磷化处理或镀铜、镀锡处理。对齿面进行应力喷丸处理,可提高25%的齿轮寿命。对于滑动速度高的齿轮,可进行渗硫处理以提高耐磨性。渗硫后摩擦因数可显著降低,即使润滑条件较差,也能防止齿面擦伤、咬死和胶合。