全文预览

材料基因组工程研究院

上传者:梦&殇 |  格式:docx  |  页数:15 |  大小:23KB

文档介绍
效能,最终使材料科学走向“按需设计”的终极目标。当前,即使在材料计算模拟技术领先的欧美国家,由于受到目前计算能力、理论模型和基础数据的限制,绝大多数材料计算结果的准确性还远不能达到实验结果水平,难以满足实用要求。因此,在由传统经验方法向新型预测方法的过渡中,高通量实验扮演着承上启下的关键角色。首先,高通量实验可为材料模拟计算提供海量的基础数据,使材料数据库得到充实;同时,高通量实验可为材料模拟计算的结果提供实验验证,使计算模型得到优化、修正;更为重要的是,高通量实验可快速地提供有价值的研究成果,直接加速材料的筛选和优化。随着中国材料科技的快速发展和材料基因组方法在研发中不断被广泛采用,高通量实验的重要性将日益彰显。高通量实验制备技术高通量实验中组合材料样品的制备一般分为“组合”与“成相”2个步骤:1)将多个元素系统性地进行混合,以获得所需的材料成分“组合”; 2)通过扩散或者热力学过程形成晶相或非晶相材料,即“成相”。组合材料样品的制备方法种类繁多,可根据不同应用领域的要求灵活选用。包括:基于薄膜沉积工艺的高通量组合制备技术、热电参数等。高通量微区电化学性能表征:美国PrincetonAppliedResearch,AMETEK,Inc.开发的VersaSCAN微区电化学扫描系统是以电化学过程和材料电化学特性为基材料基因工程——为什么是一项“颠覆性前沿技术” 1.前言材料基因组技术是近几年兴起来的材料研究新理念和新方法,是当今世界材料科学与工程领域的最前沿。材料基因工程借鉴人类基因组计划,探究材料结构与材料性质变化的关系。并通过调整材料的原子或配方、改变材料的堆积方式或搭配,结合不同的工艺制备,得到具有特定性能的新材料。但是材料基因组与人类基因组的又有很大的区别,材料的微观结构多样化,不但成分组成可以不同,微观形貌等结构也可能千差万别,其组成-结构-性能之间的关系更加复杂。

收藏

分享

举报
下载此文档