全文预览

自主招生数学讲义

上传者:幸福人生 |  格式:doc  |  页数:68 |  大小:2576KB

文档介绍
2]设Sn=1+2+3+…+n,n∈N*,求的最大值.错位相减法这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.[例3]求和:[例4]求数列前n项的和.练习:求:Sn=1+5x+9x2+······+(4n-3)xn-1反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.[例5]求的值分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6]求数列的前n项和:,…[例7]求数列{n(n+1)(2n+1)}的前n项和.练习:求数列的前n项和。裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9]求数列的前n项和.[例10]在数列{an}中,,又,求数列{bn}的前n项的和.[例11]求证:练习:求13,115,135,163之和。合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°∵(找特殊性质项)∴Sn=(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{an}:,求S2002.

收藏

分享

举报
下载此文档