化简求值.【分析】原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【解答】解:∵a﹣b=1,ab=﹣2,∴原式=ab+2(a﹣b)﹣4=﹣2+2﹣4=﹣4,故答案为:﹣4 13.若2m=3,2n=5,则23m﹣2n= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】首先应用含2m,2n的代数式表示23m﹣2n,然后将2m,2n值代入即可求解.【解答】解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2,=27÷25,=,故答案为:. 14.写出命题“若2a=4b,则a=2b”的逆命题: 若a=2b,则2a=4b .【考点】命题与定理.【分析】交换原命题的题设与结论部分即可得到逆命题.【解答】解:命题“若2a=4b,则a=2b”的逆命题是“若a=2b,则2a=4b”.故答案为若a=2b,则2a=4b. 15.已知n边形的内角和是一个五边形的外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°和外角和定理列出方程,然后求解即可.【解答】解:设多边形的边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6.故答案为:6. 16.已知x、y满足,则x2﹣y2的值为 252 .【考点】二元一次方程组的解.【分析】根据已知方程组求得(x+y)、(x﹣y)的值;然后利用平方差公式来求代数式的值.【解答】解:,由①+②得到:x+y=2,由①﹣②得到:x﹣y=126,所以x2﹣y2=(x+y)(x﹣y)=2×126=252.故答案是:252. 17.如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A= 40° °.【考点】三角形内角和定理.【分析】先利用三角形的内角和求出∠OBC+∠OCB,再用角平分线的意义,整体代换求出∠ABC+∠ACB,最后再用三角形的内角和即可.