全文预览

传染病模型数学建模论文

上传者:qnrdwb |  格式:doc  |  页数:9 |  大小:317KB

文档介绍
远。产生这个问题的原因有以下几个方面:第一:对每个病人每天有效接触的平均人数估计值偏小。不是简单的成正比关系,应该是成多次方关系,甚至是指数关系。第二:美国疾病预防与控制中心所得到的数据具有滞后性。第三:在美国不一定成立。可以把那些身体强壮的、注意自己个人卫生的人排除在外。(二)、考虑潜伏期的数学模型1、模型假设(1)、在甲型H1N1流感传播期内,美国境内的总人数为N亿不变,既不考虑生死,也不考虑迁移,人群分为易感染者S,病毒潜伏人群E,发病人群I和退出人群R(括死亡者和治愈者)四类,时刻t内这三类人在总人数中所占比例分别为。(2)、每个病人每天有效接触的平均人数为,称为日接触率,当已感染者与易感染者有效接触时,使易感染者变为病毒潜伏人群,病毒潜伏人群过一段时间再转换成发病人群,发病人群被治愈。2、模型构成易感者和发病者有效接触后成为病毒潜伏者。设每个发病者平均每天有效接触的易感者数为,个发病者平均每天能使个易感者成为病毒潜伏者。所以有化简得:病毒潜伏人群的变化等于易感人群转入数量减去转化为发病人群的数量,即其中表示潜伏期日发病率,即每个潜伏者平均有效发病的人数。单位时间内退出者的变化等于发病人群的减少,即其中表示日退出率,即每个病人平均有效病情结束的人数。发病人群的变化等于潜伏人群转入的数量,即初始时刻易感染者,已感染者与病愈免疫者的比例分别是3、模型求解由于潜伏期的人群数量不能确定,所以可视为是易感人群的一部分,因此求解过程跟忽略潜伏期的一样。四、模型的改进就如何确定日接触率的值。就如何确定日接触率可以进行改进,根据以前的流感疫情治愈率,加权平均得到值,而不是简单的是一个正比关系。病毒在人群中的传播刚开始阶段一个有一个爆发阶段,该阶段的日接触率很大,可设为是一个冲激变量。参考文献:[1]姜启源谢金星叶俊数学建模(第四版)高等教育出版社[2]数据来源:美国疾病预防控制中心

收藏

分享

举报
下载此文档