验事件发生的可能性,让学生在具体的操作活动中进行独立思考并主动与同伴交换自己的想法,引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性,经历知识的形成过程。但也要注意一点,虽然在这儿都是借助于实验来验证,但也要逐渐引导学生从实验结果所呈现的规律性来认识可能性的大小,为后面的学习打下良好的基础。2.把握好教学要求。本单元主要是让学生对随机现象“初步体验”和“感受”,因此,教师在引导学生感受“确定事件”“不确定事件”以及“事件发生的可能性大小”时,只要让学生能够结合具体的问题情境,用“一定(肯定)”“不可能”“可能”“经常”“偶尔”等词语来描述事件发生的可能性就可以了,不必要求学生使用有关术语进行解释,也不必要求学生求出可能性的具体大小。 综合与实践 掷一掷一、利用的数学知识1.组合(两个骰子上的数字之和)。2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数)。3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的)。二、活动步骤(一)示范游戏 1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。(二)小组内游戏,探索结论。通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。(三)理论验证通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。