原序列季节效应,差分后序列时序图如图2所示。图2美国月度事故死亡人数1阶12步差分后序列时序图时序图显示差分后序列类似平稳。3.模型定阶:考察差分后序列自相关图,如图3,进一步确定平稳性判断,并估计拟合模型的阶数。图3美国月度事故死亡人数1阶12步差分后序列自相关图自相关图显示延迟12阶自相关系数显著大于2倍标准差范围,这说明差分后序列中仍蕴含着非常显著的季节效应。延迟1阶的自相关系数也大于2倍的标准差,这说明差分后序列还具有短期相关性。观察偏自相关图,如图4,得到的结论和上面的结论一致。图4美国月度事故死亡人数1阶12步差分后序列偏自相关图图5序列白噪声检验图5显示,原序列延迟各阶LB统计量的P值小于显著性水平0.05,所以拒绝原假设,序列不通过白噪声检验。根据差分后序列的自相关图和偏自相关图的性质,拟合乘积季节模型。自相关图显示,12阶以内的自相关系数1阶截尾,偏自相关图显示,12阶以内的偏自相关系数1阶截尾,所以尝试使用ARMA(1,0)模型提取差分后序列的短期自相关信息。再考虑季节自相关特征,这时考察延迟12阶、24阶等以周期长度为单位的自相关系数和偏自相关系数的特征。自相关图显示延迟12阶自相关系数显著非零,而偏自相关图显示延迟12阶偏自相关系数显著非零,这时用以12步为周期的模型提取差分后序列的季节自相关信息。参数估计:图6拟合模型综合前面的差分信息,我们要拟合的乘积季节模型为。使用条件最小二乘估计方法,确定该模型的口径为:5.模型检验:对序列拟合模型,模型及模型参数的显著性检验如图7、8所示。图7模型参数的显著性由图7知,拟合效果显示模型参数显著。图8残差白噪声检验对拟合模型进行白噪声检验,结果显示P值都大于显著性水平0.05.接受原假设,残差序列通过白噪声检验,模型显著,说明模型拟合良好,对序列相关信息提取充分。将序列拟合值和序列观察值联合作图,如图9所示。