为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与x之间的函数关系式;椪柑品种ABC每辆汽车运载量1086每吨椪柑获利(元)80012001000(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;(3)为了减少椪柑积压,湘西州制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?考点:一次函数的应用.分析:(1)等量关系为:车辆数之和=15,由此可得出x与y的关系式;(2)关系式为:装运每种脐橙的车辆数≥3;(3)总利润为:装运A种椪柑的车辆数×10×800+装运B种椪柑的车辆数×8×1200+装运C种椪柑的车辆数×6×1000+运费补贴,然后按x的取值来判定.解答:解:(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,则装C种椪柑的车辆是15﹣x﹣y辆.则10x+8y+6(15﹣x﹣y)=120,即10x+8y+90﹣6x﹣6y=120,则y=15﹣2x;(2)根据题意得:,解得:3≤x≤6.则有四种方案:A、B、C三种的车辆数分别是:3辆,9辆,3辆或4辆,7辆,4辆或5辆5辆、2辆、8辆或6辆、3辆、6辆;(3)W=10×800x+8×1200(15﹣x)+6×1000【15﹣x﹣(15﹣2x)】+120×50=4400x+150000,根据一次函数的性质,当x=6时,W有最大值,是4400×6+150000=176400(元).应采用A、B、C三种的车辆数分别是:6辆、3辆、6辆.点评:本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键.