全文预览

2018九年级数学上册 第23章 旋转数学活动—旋转与坐标教案 (新版)新人教版

上传者:科技星球 |  格式:doc  |  页数:5 |  大小:284KB

文档介绍
、综合应用(20分)Р4.(20分)△ABC在方格中的位置如图所示.Р(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,-1)、B(1,-4),并求出C点的坐标;Р(2)作出△ABC关于横轴对称的△A1B1C1,再作出△ABC以坐标原点为旋转中心、旋转180°后的△A2B2C2,并写出C1,C2两点的坐标.Р解:(1)如图,C(3,-3).Р(2)如图,C1(3,3),C2(-3,3).Р三、拓展延伸(20分)Р5.(20分)如图,直线l1与l2相交,α=40°,点P在∠α内(不在l1、l2上).小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称轴点P1,再以l2为对称轴作P1于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,…,如此继续,得到一系列点P1,P2,…,Pn,若Pn与P重合,则n的最小值是多少?能运用旋转的知识给予解释吗?Р解:根据题意,可作出示意图如图所示:设两直线交点为O,根据旋转的知识可得,作出的一系列点P1,P2,P3,…,Pn都在以O为圆心,OP为半径的圆上.点P1可看成点P绕圆心O逆时针旋转2β得到的.P2可看成P1绕圆心O顺时针旋转2(α+β)即80°+2β得到,此时,点共绕O顺时针旋转80°,P3可看成P2绕圆心O顺时针旋转2(2α+β)即160°+2β得到,此时,点共绕O逆时针旋转80°+2β,P4可看成P3绕圆心O顺时针旋转(240°+2β)得到,此时点共绕O顺时针旋转160°,P5可看成P4绕圆心O逆时针旋转(320°+2β)得到,此时点共绕O逆时针旋转160°+2β,…,依次类推,到P9时,共逆时针旋转320°+2β≠360°,没有回到原来的点P处,所以继续旋转,一直到P18,共顺时针旋转720°,此时回到原来的点P处,则n的最小值为18.

收藏

分享

举报
下载此文档