多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.被4、3、2除时都余地,即是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.Р【解】设游行队伍的总人数为,则由题意知分别被4、3、2除时均余1,即是4、3、2的公倍数,于是可令,由此可得: ①要使游行队伍人数最少,则式①中的应为最少正整数且为5的倍数,应为2.于是可令,由此可得:, ②Р所以,.Р取代入②式,得Р故游行队伍的人数最少是1045人.Р〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.Р【例12】设且≥15,都是{1,2,3,…,}真子集,,且={1,2,3,…,}.证明:或者中必有两个不同数的和为完全平方数.Р【证明】由题设,{1,2,3,…,}的任何元素必属于且只属于它的真子集之一.Р 假设结论不真,则存在如题设的{1,2,3,…,}的真子集,使得无论是还是中的任两个不同的数的和都不是完全平方数.Р 不妨设1∈,则3,否则1+3=,与假设矛盾,所以3∈.同样6,所以6∈,这时10,,即10∈.因≥15,而15或者在中,或者在中,但当15∈时,因1∈,1+15=,矛盾;当15∈时,因10∈,于是有10+15=,仍然矛盾.因此假设不真,即结论成立.Р【赛向点拨】Р1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.Р2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.