全文预览

光致发光材料性能测量方法

上传者:读书之乐 |  格式:ppt  |  页数:61 |  大小:2665KB

文档介绍
变。但在激发态,由于离子松弛(即位形改变),电子以热能形式散射一部分能量返到新激发态能级C形成新的活性中心。那么,发光过程就是电子从活化中心C回到原来基态A或D。显然,激活过程能量ΔEAB>ΔECA或ΔECD。这就解释了斯托克位移。Р图2 发光中心基态和激发态的势能图Р应用之一:解释斯托克位移Р应用之二:解释发光“热淬灭”效应Р任何发光材料,当温度升高到一定温度时,发光强度会显著降低。这就是所谓的发光“热淬灭”效应(Thermal quenching effect)。利用图2可以解释这一现象。在图2中,基态和激发态的势能曲线交叉于E点。在该点,激发态的离子在能量不改变的情况下就可以回到基态(E也是基态势能曲线上的一点),然后再通过一系列的改变振动回到基态的低能级上去。因此,E点代表一个“溢出点”(Spillorer Point)。如果处于激发态的离子能获得足够的振动能而达到E点,它就溢出了基态的振动能级。如果这样,全部能量就都以振动能的形式释放出来,因而没有发光产生。显然,E点的能量是临界的。一般说来,温度升高,离子热能增大,依次进入较高振动能级,就可能达到E点。Р图2 发光中心基态和激发态的势能图Р在上述热淬灭现象的那种情况中,激发离子通过把振动能传递给环境——基质晶格,而失掉了其剩余的能量,返回到较低的能级上。这种跃迁过程不发射电磁波,即光,因而称为非辐射跃迁(nonrediative transition).?类似这种非辐射跃迁,在敏活磷光体的机制中还包括一类非辐射能量传递(nonrediative energy transition)。图3说明这种情况。Р应用之三:解释非辐射跃迁Р图3Р另外,在吸收了光以后,离子晶格有一定弛豫,故平衡位置re只有统计平均的意义,实际上是一个极小的区间,因此吸收光谱就包括许多频率(或波长)而形成宽带。这就是固体中离子光谱呈带状的原因。

收藏

分享

举报
下载此文档