灭”效应(Thermal quenching effect)。利用图2可以解释这一现象。在图2中,基态和激发态的势能曲线交叉于E点。在该点,激发态的离子在能量不改变的情况下就可以回到基态(E也是基态势能曲线上的一点),然后再通过一系列的改变振动回到基态的低能级上去。因此,E点代表一个“溢出点”(Spillorer Point)。如果处于激发态的离子能获得足够的振动能而达到E点,它就溢出了基态的振动能级。如果这样,全部能量就都以振动能的形式释放出来,因而没有发光产生。显然,E点的能量是临界的。一般说来,温度升高,离子热能增大,依次进入较高振动能级,就可能达到E点。Р图2 发光中心基态和激发态的势能图Р另外,在吸收了光以后,离子晶格有一定弛豫,故平衡位置re只有统计平均的意义,实际上是一个极小的区间,因此吸收光谱就包括许多频率(或波长)而形成宽带。这就是固体中离子光谱呈带状的原因。?在上述热淬灭现象的那种情况中,激发离子通过把振动能传递给环境——基质晶格,而失掉了其剩余的能量,返回到较低的能级上。这种跃迁过程不发射电磁波,即光,因而称为非辐射跃迁(nonrediative transition).?类似这种非辐射跃迁,在敏活磷光体的机制中还包括一类非辐射能量传递(nonrediative energy transition)。图3说明这种情况。Р应用之三:解释非辐射跃迁Р图3Р某些杂质对发光材料有“毒物”作用,激发光因材料含有毒物而淬灭。毒物效应往往是以非辐射能传递方式起作用的:能量或从敏活剂或激活剂传递到毒物上,而后者将能量以振动能散射到基质晶格中,以致活性中心不能发光。具有非辐射跃迁的离子有Fe3+、Co2+、Ni2+等,因而在制备磷光材料中应当杜绝这些杂质的存在。Р应用之四:解释“毒物”作用Р光致发光材料的常见应用Р荧光灯?LED?激光?夜明设施?生物荧光标记?太阳能电池