中,数据之间关系的解释往往因人而异,不同分析者画出的拟合曲线很可能也是不一样的;3、回归分析可以准确地计量各个因素之间的相关程度与回归拟合程度的高低,提高预测方程式的效果;在回归分析法时,由于实际一个变量仅受单个因素的影响的情况极少,要注意模式的适合范围,所以一元回归分析法适用确实存在一个对因变量影响作用明显高于其他因素的变量是使用。多元回归分析法比较适用于实际经济问题,受多因素综合影响时使用。Р缺点:Р有时候在回归分析中,选用何种因子和该因子采用何种表达Р式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些Р情况下受到限制。Р支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科.目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段Р两个不足:Р(1) SVM算法对大规模训练样本难以实施Р由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法Р(2) 用SVM解决多分类问题存在困难Р经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。