-5h内,这也取决于供氧状况。一般,在对数生长期DO明显下降,从其下降的速率可估计菌的大致生长情况。DO低谷到来的迟早与低谷时的DO水平随工艺和设备条件而异。二次生长时DO往往会从低谷处上升,到一定高度后又开始下降——这是利用第二种基质的表现。生长衰退或自溶时会出现DO逐渐上升的规律。值得注意的是,在培养过程中并不是维持DO越高越好。即使是专性好气菌,过高的DO对生长可能不利。氧的有害作用是经过形成O,超氧化物基O2-和过氧化物基O22-,或羟基自由基OH-,破坏许多细胞组分体现的。有些带巯基的酶对高浓度的氧敏感,好气微生物曾发展一些机制,如形成触酶,过氧化物酶和超氧化歧化酶(SOD),使其免遭氧的摧毁。次级代谢产物为目标函数时,控制生长不使过量是必要的。增加溶氧的方法有:①在通气中掺入纯氧或富氧,使氧分压提高;②提高罐压,这固然能增加溶氧,但同时也会增加溶解CO2的浓度,因为它在水中的溶解度比氧高30倍。这会影响pH和菌的生理代谢,还会增加对设备强度的要求;③改变通气速率,其作用是增加液体中夹持气体体积的平均成分;在通气量较小的情况下增加空气流量,DO提高的效果显著。但在流量较大的情况下再提高空气流速,对氧溶解度的提高不明显,反而会使泡沫大量增加,导致逃液。④提高设备的供氧能力(以氧的体积传质(简称供氧)系数KLa表示),从改进搅拌考虑,更容易收效。改变搅拌器直径或转速可增加功率输出,从而提高a值。另外改变挡板的数目和位置,使剪切发生变化也能影响a值。在考查设备各项工程参数和工艺条件对菌的生长和产物形成的影响时,同时测定改条件下的DO参数对判断氧的供需是大有好处的。(4)优化诱导条件及诱导方法在重组Escherichiacoli高密度培养过程中,要达到重组产物的最大比生产率,还要考虑合适的诱导时间、诱导剂强度、诱导时的温度、诱导的培养基以及营养物的流加策略。[/size]