----------------------------------------------------------------------------------------1分证明:作射线AQ交BC于点Q,使得∠QAC=90°,----------------------------------1分∵∠ACB=45°,∴∠AQC=45°,∴AQ=AC,∵ADEF是正方形,∴∠DAF=90°,AD=AF,∵∠QAD=∠QAC+∠DAC,∠CAF=∠DAF+∠DAC,∴∠QAD=∠CAF在△QAD和△CAF中∵,∴△QAD≌△CAF,∴∠ACF=∠AQD=45°,-----------1分∵∠ABC=45°,∴∠BCF=90°,即CF⊥BD。ABCDEFHPM(3)情况一:点D在BC边上,设CP=x作AH⊥BC于H,AM⊥CF于M,联AP,∵∠BCF=90°,∴AHCM是矩形,∵∠ACB=45°,∴AH=HC,∴AHCM是正方形,∵AC=,∴AH=HC=AM=MC=4,∵在Rt△ADP中,AD2+DP2=AP2,∴(AH2+HD2)+(DC2+CP2)=AM2+(MC-CP)2,∵CD=2∴(16+4)+(4+x2)=16+(4-x)2,∴x=1,即CP=1.-----------------------------2分ABCDEFPHM情况二:点D在BC延长线上,设CP=x,作AH⊥BC于H,AM⊥CF于M,联AP,同理可得AHCM是正方形,且AH=HC=AM=MC=4,∵在Rt△ADP中,AD2+DP2=AP2,∴(AH2+HD2)+(DC2+CP2)=AM2+(MC+CP)2,∴(16+36)+(4+x2)=16+(4+x)2,∴∴x=3,即CP=3--------------------------2分∴CP=1或3.(注:若两个答案都不对,但能分类讨论,则得1分)