全文预览

沪科版七年级数学下册总复习

上传者:菩提 |  格式:doc  |  页数:22 |  大小:1190KB

文档介绍
个有效数字前面的零的个数(包括小数点前面的一个零)。(二)整式乘法:1、单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。2、单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加。3、多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项分别相乘,再把所得的积相加。(三)、完全平方公式与平法差公式1、完全平方公式:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的两倍。2、平法差公式:两个数的平方之差等于这两个数的和与这两个数的差之积。(四)、整式除法(1)单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。(2)多项式除以单项式的除法法则:单项式与多项式相除,先把多项式的每一项除以这个单项式再把所得的商相加。(五)、因式分解1、定义:把一个多项式化为几个因式的乘积的形式,叫做因式分解,也叫做把这个多项式分解因式。2、分解因式的基本方法:(1)提公因式法(2)公式法:运用完全平方公式和平法差公式(3)对于二次三项式的因式分解的方法:1)配方法,2)十字相乘法:公式例:将因式分解。方法一:配方法:原式===方法二:十字相乘法:=(4)分组分解法3、分解因式的技巧:(1)因式分解时,有公因式要先提公因式,然后考虑其他方法;(2)因式分解时,有时项数较多时,看看分组分解法是否更简洁(3)变形技巧:①符号变形Ⅰ、Ⅱ、当n为奇数时,Ⅲ、当n为偶数时,②增项变形:例:③拆项变形:例典题练习1、计算题(1)(2)(3)(4)(5)(6)2、快速计算:(1)(2)(3)3、,,求的值。4、如果成立,那么,。5、在括号内填上指数和底数

收藏

分享

举报
下载此文档