正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.3.有理数除法法则:(1)除以一个不等0的数,等于乘以这个数的倒数。两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得04.有理数的加减乘除混合运算(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。(2)有理数的加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行。五、有理数乘方1.乘方的概念(1)求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。乘方中,相同的因式叫做底数,相同因式的个数叫做指数。记作:,在中,a叫做底数,n叫做指数。2.乘方的性质(1)负数的奇次幂是负数,负数的偶次幂的正数。(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。3.有理数的混合运算做有理数的混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。科学记数法:把一个大于10的数记成的形式(其中a大于或等于1且小于10,n是正整数),这种记数法叫科学记数法.强调:a是整数数位只有一位的数.近似数近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.求近似数:按精确位的要求,用四舍五入法求近似数。(3)有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.