减系数和角频率。复指数信号是一个抽象的信号,实际中并不存在复指数信号,但借助于复指数信号,可以表示指数信号、三角信号和指数包络三角信号,描述了幅值、衰减、频率和相位等特征量。4.三角信号的复指数表示一个三角信号可以用一对共轭复指数信号表示,根据欧拉公式,它们满足关系(1-15)(M是实数,A1、A2是复数。)图1-7显示了在复平面上一对共轭复指数信号叠加为一个实三角信号的关系。在复平面上,共轭复函数和是一对旋转的单位向量,向量始端在原点,长度为1,分别以和的角速度旋转。在时,两个旋转向量的起始位置在正实轴,即初始相位均为零;在任意时间,两个单位旋转向量与实轴的夹角分别为和。两个向量在实轴上的投影都是,在虚轴上的投影分别为和。和始终关于实轴对称,两个向量叠加得到向量,始终在实轴上变化,是一个实函数,最大幅值为2。式(1-15)中的共轭复数和是复平面上两个关于实轴为对称的固定向量,向量始端在原点,长度为,辐角分别为和。图1-7三角信号和复指数信号的关系复数和与复函数和分别相乘,得和,它们也是复平面上一对旋转的共轭向量,始端在原点,长度为,分别以角速度和旋转,初始相位分别为和。在任意时间,两个向量与实轴的夹角分别为和。这两个向量在实轴上的投影均为,在虚轴上的投影分别为和。两个向量始终关于实轴对称,叠加得向量,始终在实轴上变化,最大幅值为。由此可见,一对任意幅值和初始相位的共轭复指数信号的叠加是一个实三角信号。反过来,任意幅值和初始相位的三角信号可分解为两个复指数信号的叠加。共轭复数和的模和辐角对应于三角信号的幅值和初始相位,单位共轭复函数和的角频率对应于三角信号的角频率。一个实三角信号分解为正、负两个频率的复指数信号的叠加,引出了负频率的概念,这个负频率的物理意义表示的还是实际的相同数值的正频率。信号的复指数表示把指数信号、三角信号和指数包络三角信号统一到了同一个形式,同时包含了