全文预览

人教版高中数学说课全套教案

上传者:学习一点 |  格式:doc  |  页数:39 |  大小:554KB

文档介绍
E,F分别是AB,AD的中点,求证:EF//平面BCD。Р分析思路学生试板演Р(2)例2Р在正方体ABCD-A’B’C’D’中,E为DD’中点,试判断BD’与面AEC的位置关系,并说明理由。Р分析思路师生共同完成小结方法Р变式训练:还可以证明哪些面平行Р(3)练习:在空间四边形ABCD中,E,F,G,分别是AB,BC,CD的中点,探索可以证明哪些线面平行。Р4、当堂训练,巩固深化Р通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化Р采用课后练习第1,2Р5、小结归纳,回顾反思。Р小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。Р(1)、课时小结Р①知识总结:利用线面平行的判定定理证明线面平行;Р②方法总结:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行"向“线面平行”的转化。Р(2)、反思Р 我设计了三个问题Р①、通过本节课的学习,你学到了哪些知识?Р②、通过本节课的学习,你最大的体验是什么?Р③、通过本节课的学习,你掌握了哪些技能?Р(二)、作业设计Р作业分为必做题和选择题,必做题是对本节课学生知识水平的反馈,选择题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。Р我设计了以下作业:Р必做题:课后习题A 1,2,3;Р 选择题:如图,已知P为△ABC外一点,点M、N分别为△PAB、△PBC的重心。求证MN//平面ABCР(三)、板书设计Р板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。Р五、评价分析

收藏

分享

举报
下载此文档