车就走排在在第五位。这反映了旅客对春运期间铁路服务质量的要求在提高,相当多旅客在春运期间乘坐火车不只是因为铁路票价便宜。Р 3.3 春运客流调查的对应分析Р 以乘车目的与旅客出行方向为例,由于乘车目的有4个选项,旅客出行方向有7个选项,较适合于对应分析的条件和优势。Р (1)最终汇总统计量。表3显示对应分析最终汇总统计量,包括维度、单一值、惯量、卡方值、户值、惯量解释比例,以及单一值稳定性等数据。卡方值188.453,户小于0.01,表明乘车目的与出行方向之间有显著的依赖关系。第一项是维度,其值是3。单一值是各维度对变量各个类别之间差异的解释量,代表每一维度。的行分值与列分值的相关系数。数据0.240就是第一维度的行分值与列分值的相关系数。惯量即相应维度单一值的平方,它表示每个维度对各个变量类别之间差异的解释量。解释比例即每一维度惯量在总特征值中的比例。在表3中,第一维度的解释比例为61.9%,说明第一维度能够解释所有变量类别差异的61.9%;第二维度的解释比例为33.7%,能够解释所有变量类别差异的33.7%;而第三维度的解释比例仅为4.4%。Р (2)行变量与列变量的对应关系图。对应分析还能用图型直观地反映行变量与列变量之间的关系,特别是当变量的类别较多时,图型既直观又具解释力,优势更加突出。本次分析的图型结果如图1所示。Р 从图1可看出,出行方向为北京、其他方向与学生返校;出行方向为广东、福建与外出工作联系紧密。而出行方向为成都与乘车目的的4个方面距离很远,说明联系不大。出行方向为上海与外出工作、探亲、旅游等有一定距离,说明有一定联系。造成这个现象的原因主要是江西作为一个劳动力输出大省,每年外出务工人员较多,而且主要是以广东、福建等地区为主,学生流则反映出学生读书主要是以北京方向和其他方向(如西安方向)、上海方向为主,武汉离南昌较近,在短距离的旅游上表现出一定的优势。